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> Key technologies require Modeling, Simulation, and
Optimization (MSO) of complex dynamical systems.

> Most real world systems are multi-physics systems, with
different accuracies and scales in components.

> Modeling today becomes exceedingly automatized, linking
subsystems together in a network.

> Large sets of real time data are available and must be used in
modeling and model assimilation.

> Modeling, analysis, numerics, control and optimization
techniques should go hand in hand. Digital Twins.

> Most real world (industrial) models are too complicated for
optimization and control. Model reduction is a key issue.

> We need to be able to quantify errors and uncertainties in the
reduction process, and in the MSO.

Examples from gas and heating networks.
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O Gas transport
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Ly SFB TRR 154

. . e’ _TRR
Collaborative Research Center Transregio R 154

Modelling, simulation and optimization of Gas networks

HU Berlin

TU Berlin

Univ. Duisburg-Essen

FA University Erlangen-NUrnberg
TU Darmstadt

Goal: Gas flow simulation and optimization using a network
based model hierarchy (digital twin).

Deal with erratic demand and nomination of transport capacity,
use gas network as storage for hydrogen, methane produced
from unused renewable energy, etc.

v
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Ly Components of gas flow model

System of partial differential equations with algebraic constraints

> 1D-3D compressible Euler equations (with temperature) to
describe flow in pipes.

> Network model, flow balance equations (Kirchoff’s laws).

> Network elements: pipes, valves, compressors (controllers,
coolers, heaters).

> Surrogate and reduced order models.
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% Hierarchical network
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Hierarchical network
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Hierarchical network
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Hierarchical network
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Ly Pipe flow, classical formulation

Compressible Euler equations.

0 = % + %(pv) Mass conservation
0 = 61‘( pv) + —(P +pv?) + 2/\DpV|V| + gpa3 Momentum balance

_ 9 1 9 2 4kw
0 = 5 (p(EV +e)> + ox (pV(EV +e)+pv> +5 (T—Tw),
Energy balance

together with equations for real gas p = RpTz(p, T).
> density p, k, heat transfer coefficient,

> temperature T, wall temperature T,,

> velocity v, g gravitational force,

> pressure p, A friction coefficient,

> h height of pipe, D diameter of pipe,

> e internal energy, R gas constant of real gas.



Ly Model hierarchy in a pipe.

Euler equations (TA1)

Isothg 1 Eu-
L(pr), Z(pv?) smallJ sothermal Eur ]

ler equations

[ Nonlinear equations 2 (pv®) small

2 (pv) small Semilinear model

Simplified non-
linear equations T

2= OJ [Frictmn dominated mndel]

Stationary model

S
]
=

z = const.

const.

N
I

Temperature dependent
algebraic model (TA-ALG)

N Tsothermal al-

gebraic model

= Congt,

Every element/node/edge in the network is modelled via a model
hierarchy, including surrogate models. This allows adaptivity in
space-time-model via error estimates.

Domschke, Hiller, Lang, Tischendorf. Modellierung von Gasnetzwerken: Eine Ubersicht, Preprint SFBTRR 154, 2017.
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O District heating network
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Ly District heating network

German Ministry of Education and Research (BMBF)
Energy efficiency via intelligent district heating networks (EiFer)

> TU Berlin

> Univ. Trier

> Fraunhofer ITWM Kaiserslautern
> Stadtwerke Ludwigshafen.

Goal: Build a model hierarchy for heating network of different
levels including surrogate models. Coupling of heat, electric,
waste incineration, and gas.
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Ly Heating network

Simulated heat distribution in local district heating network:
Technische Werke Ludwigshafen.
Entry forward flow temperature 84C, backward flow temperature




Ly Hot water flow, classical formulation

Simplified incompressible Euler equations.

_Op 0 .

0 = ot + 87( pv), Mass conservation,

0 = 0 —(pv) + 3( + pv®) + A Vvl + 0 h, Momentum balance
= gt g \P eVt 5P 975

9 ( 1 9 ,
0 = 8t<( v +e)>+ax(ev)+D(T—Tw),Energybalance

together with incompressibility condition.

Terms for pressure energy and dissipation work ignored.

> density p, k, heat transfer coefficient,

> temperature T, wall temperature T,,

> velocity v, g gravitational force, pressure p,

> A friction coefficient, e internal energy,

> h height of pipe, D diameter of pipe.

> S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. Moses Badlyan, M. Rein, and M. Schmidt, Port-Hamiltonian
modeling of disctrict heating networks, http://arxiv.org/abs/1908.11226, submitted for publication, 2019.

> R. Krug, V. Mehrmann, and M. Schmidt, Nonlinear Optimization of District Heating Networks, Submitted for publication
https://arxiv.org/abs/1910.06453 2019.
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@ A modeling wishlist
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Ky A wishlist

> Want a modularized network based approach.

> Want representations so that coupling of models works across
different scales and physical domains.

Want a representation that is close to the real physics for open
and closed systems.

> Models should be easy to analyze mathematically (existence,
uniqueness, robustness, stability, uncertainty, errors etc).

> Invariance under local coordinate transformations (in space
and time). Ideally local normal form.

> Model class should allow for easy (space-time) discretization
and model reduction.

> Class should be good for simulation, control and optimization,

Is there such a Jack of all trades, German:
Eierlegende-Woll-Milch-Sau?
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Ly Energy based network modeling

> Use energy as common quantity of different physical systems
connected as network via energy transfer.

> Split components into energy storage, energy dissipation
components, control inputs and outputs, as well as
interconnections and combine via a network (Dirac structure).

> Allow every network node to be a model hierarchy of fine or
coarse, continuous or discretized, full or reduced models.

> A system theoretic way to realize this are (dissipative)
port-Hamiltonian systems.
> P. C. Breedveld. Modeling and Simulation of Dynamic Systems using Bond Graphs, pages 128—173. EOLSS Publishers Co.

Ltd./UNESCO, Oxford, UK, 2008.

> B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and
Applications, 223. Birkhauser/Springer Basel CH, 2012.

> A.J.van der Schaft, D. Jeltsema, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In
Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, Vol. 444. Springer Verlag, New
York, N.Y., 2014.
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Ly Port-Hamiltonian systems

Classical nonlinear port-Hamiltonian (pH) ODE/PDE systems

x = (J(x,t) = R(x,1)) ViH(x) + (B(x, t) — P(x, t))u(t),
y(t) = (B(x, 1)+ P(x, 1) Vi H(x) + (S(x, 1) + N(x, t))u(t),

> X is the state, u input, y output.

> H(x) is the Hamiltonian: it describes the distribution of
internal energy among the energy storage elements;

> J = —JT describes the energy flux among energy storage
elements within the system;

> R = R" > 0 describes energy dissipation/loss in the system;

> B+ P: ports where energy enters and exits the system;

> S+ N, S= 8", N=—N', direct feed-through input to output.

> In the infinite dimensional case J, R, B, P, S, N are operators
that map into appropriate function spaces.
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Ly Why should this be a good approach?

> PH systems generalize Hamiltonian/gradient flow systems.
> Conservation of energy replaced by dissipation inequality
]
Hx(t) —Hx(k) < | y(O)7u(t) o,
0
> PH systems are closed under power-conserving
interconnection. Modularized network based modeling.
> PH structure allows to preserve physical properties in
Galerkin projection, model reduction.
> Physical properties encoded in algebraic structure of
coefficients and in geometric structure associated with flow.
Can we add algebraic constraints, like Kirchhoff’s laws,
position constraints, conservation laws?
> C. Beattie, V. M., H. Xu, and H. Zwart, Linear port-Hamiltonian descriptor systems. Math. Control Signals and Systems,
> 20j7\;a2r10c112r Schaft, Port-Hamiltonian differential-algebraic systems. In Surveys in Differential-Algebraic Equations I,

173-226. Springer-Verlag, 2013.
> A.van der Schaft and B. Maschke, Generalized Port-Hamiltonian DAE Systems, Systems Control Letters 121, 31-37, 2018.
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Ly New definition pH DAEs

Definition (M./Morandin 2019)

Let ¥ C R™ (state space), I C R time interval, and S =1 x X. Consider

E(t,x)x +r(t,x) = (J(t,x)— R(r,x))z(t,x) + (B(t, x) — P(t, x))u,
y = (B(t,x)+ P(t,x))Tz(t,x) + (S(t, x) — N(t, x))u,
with Hamiltonian H € C'(S,R), where E € C(S,R%"),

J,R e C(S,R™), B,P e C(S,R“™),S=S8T N=—-NT ¢ C(S,R™")
and z,r € C(S,RY). The system is called port-Hamiltonian DAE if

M(t,x)=-r"= [ _‘ér ,‘H W(t,x)=WT = [ /fr g] >0,
OH OH
a—x(t,x) = ET(t,x)z(t, x), W(t’ x) = zT(t, x)r(t, x).

> V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th
IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019 https:/arxiv.org/abs/1903.10451
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Ly Properties of pHDAEs

> Dissipation inequality

b
H(tg, X(tg)) — ’H(ﬁ , X(t1)) < t }/(T)TU(T)dT
1
> Definition extends to weak solutions and infinite dimension.
> Invariance under state-time diffeomorphisms.
> Stability, Hamiltonian is a Lyapunov function.
> Asymptotic stability, if no energy enters via input/output and
dissipation inequality is strict.
> Structure invariant when making system autonomous.
> Structure invariant under power conserving interconnection.

> Structure invariant under constraint preserving Galerkin
projection (FE Method, model reduction).

> Underlying Lagrangian structure, symplectic flow.



Ly oH PDEs

Abstract port-Hamiltonian PDE formulation

dz dE(2) , N
0@~ EE  Bue) D
v = 8@ o,

> Z={zeD,|p>4,§>0a.e}CD,=W"3(0,¢);R3).

> Forz e Z, J(2)[-], R(2)[-] : D, — D; are linear continuous,
J(z) is skew-adjoint, R(z) is self-adjoint semi-elliptic.

> The input is given by u(z) € D, = L9({0, ¢}) with linear
continuous B(z)[-| : D, — D3, D}, = LP({0,¢}),1/g+1/p = 1.

> The system theoretic output is denoted by y(z).

> £(z) is the relative energy.

> Moses Badlyan, Maschke, Beattie, and V. M., Open physical systems: from GENERIC to port-Hamiltonian systems,
Proceedings of MTNS, 2018.

> Moses Badlyan and Zimmer. Operator-GENERIC formulation of thermodynamics of irreversible processes. Preprint TU
Berlin 2018.

> S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. Moses Badlyan, M. Rein, and M. Schmidt, Port-Hamiltonian
modeling of disctrict heating networks, http:/arxiv.org/abs/1908.11226, submitted for, publication, 2019.
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Ly pH PDE, gas flow

Port-Hamiltonian formulation of compressible Euler including
pressure energy and dissipation work, as well as entropy
balance. A. Moses Badlyan 2019

~ Op 0 .

0 = FTa 8X( pv), mass conservation

0 = %(pv) + g(p + pv?) —|— A pv|v\ + gpaa , momentum balance
_ oe 0 ov )\ 4Ky

0 = EJF_(G ))—i—pa——ﬁ pv2 |V\+T(T Tw) , energy bal.
_ 0s 2 4k, (T — Ty)

0 = T —l— (SV)) 5 D TV |v| + ) T entropy balance

Add node conditions and boundary conditions. Kirchhoff’s laws.
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Ly oH PDE, hot water flow

Port-Hamiltonian formulation of incompressible Euler including
pressure energy and dissipation work, and entropy balance.

0 = p@, mass conservation
ox
0 = 8_t(pv) + VQ% + % + %pVM + gpg—z, momentum balance
0 = % + vg—)e(—z)bpv2 lv| + % (T — Tw), energy balance
0 = g—f + v% - zg—pTvz lv|+ %@, entropy balance

Add node conditions (Kirchhoff laws), mixing conditions etc.
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Ky PH PDE weak form

Variables z = (p, M, €)™, M = pv, energy.

l 2 4
£(2) = H(2) — TwS(2) = /0 (% te+ pgh) dx — T /0 s(p, €) dx.

where T, is assumed to be constant. Introduce ballistic free
energy H(p, e) = e — TyS(p, ), then functional £ and its
variational derivatives become

E(z) = /OZ (% + H(p, e) + pgh) dx

5E(z)  [8E(2) 0&(2) dE(2)\T
6z < ép = oM 7 Jde >

_((IMP L oH N M OHNT
B 202 Op g "ploe)
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&y The J operator

The operators are assembled with respect to the (block-)
structure of the state z.
Let ¢, ¢ € D, be block-structured ¢ = (¢,, om, pe) . Then
0 ij\//(Z) 0 ]
TJ(2) = | Tus(2) Tum(z) Tme(2) |,
0 je,M(Z) 0

is associated with the bilinear form

(. T(@)) = (o, Tpm(2)0m) + (o, Tmp(2)0p) + {om, Tmm(2)¥m)
+{em, jM,e(z)¢e> + (e, je,M(z)¢M>

¥4

(Cos Tpm@bm) = /Op(wMaxmdx,
£

(oms Tum@vm) = /OM((wMax)w—(wMax)wM)dx,
¥4

(o Tom(@vm) = /oe(wmax)ww(wax)(wep)dx
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Ly The R operator

The self-adjoint semi-elliptic operator R(z) has two parts
corresponding to the friction in the pipe R*(z) and the
temperature loss through the pipe walls R*(z).

R(z) = RMN2) + R®(2) =

0 0 0
0 Riym(2) Rie(2) ]
0 Rim(2) Rie(2)+REe(2)
associated with the bilinear form
(v, R(2)y) = <<,0M,72A m(2)Ym) + (om, Riy.o(2)0e)

+ (e, Ram(2)Um) + (e, (R o(2) + Riw(2))e)

N 14 AT
Com R = [om (2 501) vmax,
(oM Riy o)) = / oy (—fpw\v) e dx,
Ry R - [ A 1) e
(0o, (R3,o@) + REG(@Ne) = [ we(agmv\v 2 )we x.
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Ly Boundary operators

The input is given as u(z) € D, by u(z) = [M/p]|5 and the port
operator B(z)[-] : D, — Dj via the pairing

(9, B(2)u(2)) = — [(por + ouM + po(e + p)) u(2)]]q .

coming from the boundary terms via integration by parts.
With the adjoint operator B*(z)[-] : D, — Dj, i.e.,

(p, B(z)u(z)) = (B*(z2)p, u(z)), the system theoretic output is
06(z) __ [IMP f

o) =B@77 = |5

+P+H@,%Hwﬂ
0
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O Model reduction, surrogate models
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Ly Surrogate models

> Replace fine phDAE model in network node by reduced or
surrogate pHDAE model.

> Reduced order model or model from input/output data.
> Do not modify network coupling structure.

> Balance equations (Kirchhoff’s laws) must still hold after
reduction.

> Make sure that the physics is still reflected correctly after
reduction, compressibility/incompressibility.

> Preserve other constraints (casimirs).

Allow for space-time-model adaptation via tolerance control.

v
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Ly Model reduction state space

Replace semidiscretized (in space) system

F(t, Xn X0, Un) = 0, Xn(to) =X}
Yn(t) = c(xn, un)

with x, € R”, u, € R™, and y;, € RP, by a reduced model
Fr(t7xl’7xf7 Uh) - 07 Xl’(tO):X,p
yr(t) = Cr(Xn Uh)

with x,(t) € R™, n, << n.

Goals
> Approximation error ||y — y,|| small, global error bounds;
> Preservation of physics: stability, passivity, conservation laws;

> Stable and efficient method for model reduction.



&y Model reduction for ordinary pH systems

Galerkin projection MOR preserves the structure of pH/dH
systems Beattie/ Gugercin 2011. Replace

x = (J — R)VxH(x) + Bu, y = B"V,H(x)
with V,H(x) = Qx by reduced system
Xr = (Jr - Rr)QrXr + Bl‘ua Yr = BTVX,Hr(Xr)

with x =~ V,x,, Q.x, = W/ QV,x, =~ W,Qx, J, = W JW,,

R = WIRW,, W'V, = I,, B.= W/B.

If V, and W, are appropriate orthornormal bases, then the
resulting system is again pH and all properties are preserved.
Extension to pH/dH DAEs nontrivial

> Beattie and Gugercin. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC), 2011.

> Chaturantabut, Beattie and Gugercin, Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems, SIAM
J. Scientific Computing, 2016,

> Gugercin, Polyuga, Beattie and van der Schaft, Structure-Preserving Tangential Interpolation for Model Reduction of
Port-Hamiltonian Systems, Automatica ,2012.
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@ MOR for linear pHDAEs
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Ly Linear time-invariant pHDAEs

Linearization arround stationary solution.
Definition (C. Beattie, V. M., H. Xu, H. Zwart 2018)

A linear constant coefficient DAE of the form

Ex = [(J-—R)Q]x+ (B— P)u,
y = (B+P)TQx+ (S+ N)u,

with E,Q € R", R=R"T,J € R, B,P€R™, S+ NeR™"is
called port-Hamiltonian DAE (pHDAE) if

) QTE=ETQ,QTyQ=-Q7J"Q,

) Q"RQ QTP
”)W::[PTQ 3 ]ZO-

Quadratic Hamiltonian % = JxT ET Qx
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& Model reduction for linear pHDAE systems

Replace
Ex=(J-R)Qx+(B—-P)u, y=(B"+P"Qx + Du
with reduced system
Ex = (J — R)Q:x + (B, — P)u, yr = (B, + P,)TQ:x, + Du

With X = VrXr, Er — WrTEVr, Qr - WrTQVr, Jr - WrTJWr,
R, = WTRW,, B, + P, = WT(B + P).

If V. and W, are appropriate orthornormal bases, then reduced
system is again a pHDAE but constraints may not be preserved.

If Q= 1luse W, =V, to keep E, symmetric positive definite
MOR must properly reflect the constraints. But they are not
always known explicitely.



Normal form and regularization

Lemma (Beattie, Gugercin, V.M. 2019)

For a (regular) linear pHDAE there exists an orthogonal basis
transformation V' such that in tThe new variable
x=[x" % X’ X] X' | = V'x, the system has the form

E4 0O 0 0 O {(‘ Jit —Ryr diz =Rz Jiz Jig O X By — Py

0 0 0 0 0 X2 ot — Ro1 U — R g g O % By — P,

0 0 0 0 0 (s | = & a2 g 0 0 % |+ Bs u,
0 0 0 0 0 o Jh Y 0 0 o0 %4 B,

0 0 0 0 0 e 0 0 0o 0 o0 %5 Bs

where Eyy > 0, Rop > 0, Jag invertible and [ Ja1  Jap ], Ba, Bs have full row rank.

First row dynamics, rows, 2, 3 index one equations, rows 4 and 5
are controllable index 2 and singular parts.

Unfortunately not really computable for large scale problems.
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Ly Example: Acoustic wave in gas pipe

Mixed finite element space discretization of acoustic wave in
pipe flow leads to large scale pHDAE:

Ex = (J—R)x+ Bu, x(0)=x°,

y = B'x,
here Q=1,S,N,P=0,E=ET > 0.
My 0 O 0 -G O 0 0O 9
E=|0 M 0|.J=|G" 0 NT|,R=1|0 D 0|,B= B .
0O 0 O 0O -N O 0 0 O 0

The discretized Hamiltonian is given by

1 1
H(x) = EXTEX = §(x1TM1x1 + xJ Maxa).

> H. Egger and T. Kugler. Damped wave systems on networks: Exponential stability and uniform approximations. Numerische
Mathematik, 138:839—-867, 2018.

Similar structure in heating and other network based models.



Constraints: Gas example
Normal form: SVD N7 = U],

>
Transforming with U = V = diag(/, UT, V,T) we obtain
M1 0 0 0 X1 0 G1 2 G1 3 0 Xq 0
0 ngg M273 0 ):(272 1 —G17—2 D272 D2,3 0 X2’2 _ Bg
0 M27:3 M3,3 0 X'273 — G1T:3 D27:3 D3,3 -2 X2,3 B3
0 0 0 O] [Xxs] L O 0 ¥ 0 X3 0

Noncontrollable index two constraints x, 3 = 0.
X1, Xz » are solutions of the classical pH system
M1 0 g Xq 4 0 G1 2 Xq _ 0 U
0 M| dt |22 —G{, Doz X2 Bso|
with initial conditions x;(0) = x?, X22(0) = xJ,.
d
X3 = VIZI-Z_1(M27:3EX272 — G1T’3X1 + D27:3X2’2 — B3’2U),
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. MOR approaches fpr pHDAEs
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&y Model reduction approaches for pHDAEs

Moment matching (frequency domain)
Interpolation methods (frequency domain)
Balanced truncation methods. (frequency domain)
Effort and flow based methods (time domain)
POD (time domain)

Reduced basis (time domain)

v VvV VvV VvV Vv Vv V

> Beattie, Gugercin and V. M., Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic
Systems. http://arxiv.org/abs/1910.05674. Festschrift for 70th birthday of A. Antoulas, 2020.

> Egger, Kugler, Liliegren-Sailer, Marheineke, and V. M., On structure preserving model reduction for damped wave
propagation in transport networks, SIAM Journal Scientific Computing, Vol. 40, A331-A365, 2018.
http://arxiv.org/abs/1704.03206

> Hauschild, Marheineke and V. M., Model reduction techniques for linear constant coefficient port-Hamiltonian
differential-algebraic systems, https:/arxiv.org/abs/1901.10242, 2019.
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O Moment matching
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Ly Moment matching

Consider first a regular pHDAE system with transfer function
H(s) = BT(sE + R— J) "B = R(s) + P(s)

with proper rational part R(s) and polynomial part P(s).
Expansion of the transfer function of the system leads to

H(s):=B"(sE+R—J) 'B= Z my(so — )’

where s, is a given shift parameter.

The generalized moments m, = B' d, with vectors d, can be
derived by rational Krylov iteration (short recursion in energy
inner product)

(SoE+ R— J)do = B, (S()E—‘r- R— J)d/ = Ed/_1, r>1.
Orthogonalize span{db, . .., d,_1} via Arnoldi-process to get V..
Reduced model is a pHDAE and matches 2r — 1 moments but
index and regularity may have changed.

Difference H(s) — H,(s) may be unbounded.



Ly Acoustic wave in pipe

Ex = (J—R)x+ Bu, x(0) = x°,

y = B'x
M 0 0 0 -G 0 00 0 0
E-|o0 M ol u=|GT 0o NT|.R=|0 D 0|.B=|B|.
0O 0 O 0 -N O 0 0O 0

> Split projection matrix V, = [Vi; Vo; Va] as x = [x]; xJ; xJ |.

> Even if columns of V, are orthogonal, this is no longer true for
columns of V;. Re-orthogonalization is required.

> Use cosine-sine (CS) decomposition for Vi, Vs

Vil _[Ur 07[C] yr
Vol |0 U |S ’
with U, Us, X orthogonal, C, S diagonal with C? + S2 = 1.



% Pressure correction

V1 - pressure V1 - pressure

With and without pressure correction via CS decomposition of
the Galerkin-projection space.
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% Small network
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% Parametric MOR

Results for discretized (blue) and reduced model (red) with dim.
2,5,10 and damping parameter d = 0.1, 1,5 (top to bottom).
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O Tangential interpolation for pHDAESs
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Ly Tangential interpolation

Compute reduced order pHDAE
Er).(r — (Jr - Rr) Xr + (Br - Pr) U, Xr(to) — 0,
Yro = (Br+Pr)TXr+(Sr+Nr) u,

such that y,(t) is good approximation to y(t) over a wide range of u(t).
Let H(s) = (BT + PT)(sE + R—J)"'(B— P) + S+ N. Given right and
left interpolation points {o+1,...,0}, {11, .., ur} with right and left
tangent directions {ki, ...,k }, {¢1, 0o, ..., ¢/}, construct

H.(s) = (BT + P])(sE; + R, — J,)~'(B, — P;) + S; + N, such that

H(o))ki = Hi(o))ki and ¢TH(u;) = ¢] He(wi), for i=1,2,...,r.
Interpolation conditions enforced via Petrov-Galerkin projection with
Vi = [(1E+R=0)(B=P)r, - (/E+R—)(B-P)k]
Z = [(iE+R=J)T(B+ Py, - (nE+R—-J)T(B+ P,
E, = Z'EV,,J,=Z'JV,,R, =Z'RV,,B,=Z'B,P,=Z"P,D, = D.



% Problems

> The reduced quantities may no longer have the structure. This
can be resolved by using a Galerkin projection, i.e., with
Z, = V.. But then only the right interpolation conditions hold.

> The polynomial parts of H(s) and H,(s) may not match,
leading to unbounded errors.

> We need to identify the constraints via the normal form or
directly from the structure of the equations.

> Beattie, Gugercin and V. M., Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic
Systems. http://arxiv.org/abs/1910.05674, 2019.
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% Structured index one case

Suppose we know the algebraic constraints explicitly and have
the semi-explicit index one pHDAE structure

E14 0} , [ Ji1 — Ry J12—F!’12] [51 - P ]
x(t) = x(t u(t
[ o o |X® UL R, Joo—Ru | DT | B_p, | U

y(t)y = [ Bl +PI Bl +P] ]x(t)+(S+ N)u(t).

where Eq1 and J>, — Roo are nonsingular.
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Ly Interpolation theoem

Theorem (Beattie, Gugercin, V.M. 2019)

Consider a semi-explicit index one pHDAE structure, interpolation
points {o1,02,...,0.} and corresponding tangent directions

T
{Kky, ko, ..., k:}. Construct basis V, = [Vr’T1 V,’Tz] as
[(HE+R—-J)'(B-P)ki, -, (c;E+R—J)"(B- P)k]
and set K, = [k1 oo kr], D =D — (BZT + PZT)(JZQ = Rgg)_1 (Bg = Pg)
Then the transfer function H,(s) of the reduced model

Erxi(t) = (Jr — Rr)xe(t) + (Br — Pr)u(t), yi(t) = (Br + Pr)x:(t) + Dru(t)

Wlth Er V E11 Vr 1, Jr Rr VT(J R) Vr + KT(D[ D)Kr,

(Br T Pr) (B -+ P) V, + (Bér + PZT)(JQZ = Hgg) (82 = Pg)Kr,
matches polynomial part of H(s) and tangentially interpolates it. The
reduced system is again a pHDAE if the reduced passivity matrix

W, = [ o ] is positive semidefinite.
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Ly Uncontrollable algebr. equation

Corollary (Beattie, Gugercin, V.M. 2019)

Consider a semi-explicit index one pHDAE structure, with B, — P, = 0,
interpolation points {o1, 02, ...,0,} and corresponding tangent

!
directions {ki, ko, . .., k:}. Construct basis V, = [V[1 V,Tz} as

[(01 E+R-J)"(B—Pki, -, (0;E+R—J) (B P)k,}
andsetK; = |ki --- k:|. Then the transfer function H(s) of the
reduced model

E-x (1) = (Jr — Rr)xr(t) + (Br — Pr)u(t), yr(t) = (Br + Pr)x(t) + Du(t)

with E, = VL ExVit, Jr— R =VI(J-R)V,, (B +P)T =(B+P)V,
is a phDAE, matches the polynomial part of H(s), and tangentially
interpolates it.
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Ly Numerical example

Consider pHDAE formulation of incompressible Oseen
equations,

v = —(a-V)v+uAv—-Vp+f inQx(0,T], v = 0,
0 = —divyv, inQ x (0, 7], v = VO,

with velocity v and pressure p, i > 0 is the viscosity, and
Q = (0,1)2. f = b(x)u(t) is an externally body force..

FD discretization gives siso index-2 pHDAE with n = 7399,
n, = 4900, and n, = 2499.

RRRRR ive H_ error vs reduced order

<<<<<<<<<<<

Figure: Model reduction error for Oseen example with IRKA as r varies
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Ly Extension to nonlinear case

> Generate projection spaces via POD or shifted POD
approaches in tranport dominant case.

> Combine with Empirical Interpolations Methods. (D)EIM.

> Incorporate as much as possible information from physical
system.

> There is still much to do for the DAE case, in particular if the
system has many transports.

> Barrault, Maxime, et al. An empirical interpolation method.: application to efficient reduced-basis discretization of partial
differential equations. Comptes Rendus Mathematique 2004.

> Chaturantabut, Beattie, and Gugercin. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM
Journal Scientific Computing, 2016.

> Chaturantabut, Sorensen, Nonlinear Model Reduction via Discrete Empirical Interpolation, SIAM Journal Scientific
Computing, 2010.

> Reiss, Schulze, Sesterhenn, and V.M. The shifted proper orthogonal decomposition: A mode decomposition for multiple
transport phenomena. SIAM Journal Scientific Computing, 2018.
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O Conclusion

53/66



> Energy based modeling for networks of multi-physics
multi-scale problems.

Model hierarchies of port-Hamiltonian DAE models.
Structured model reduction.

Tangential interpolation for pHDAEs.

Moment matching for pHDAEs.

> Beattie, Gugercin and V. M., Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic
Systems. http://arxiv.org/abs/1910.05674. Festschrift for 70th birthday of A. Antoulas, 2020.
> Egger, Kugler, Liliegren-Sailer, Marheineke, and V. M., On structure preserving model reduction for damped wave

propagation in transport networks, SIAM Journal Scientific Computing, Vol. 40, A331-A365, 2018.
http://arxiv.org/abs/1704.03206

> Hauschild, Marheineke and V. M., Model reduction techniques for linear constant coefficient port-Hamiltonian
differential-algebraic systems, https://arxiv.org/abs/1901.10242, 2019.
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% Other work and Outlook

> Real time control, optimization.
> Nonlinear pHDAEs.

> EIM, DEIM, POD, shifted POD.

> Application in Gas networks and heating networks.
Application in new turbine development.

> Application in brake squeal.

> Application in digital twins.

> Data based methods.

v
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@ The new turbine
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5y A new turbine

Collaborative Research Center 1029 "TurbIn’ at TU Berlin.
Goal: Significant increase of efficiency of gas turbines via the
interactive use of instationary effects of combustion and flow in
gas turbines.




% The new turbine

Can we use the same approach for the new turbine?

> Flow is reactive and transport dominated.

> Fast moving shocks and reaction fronts.

> Highly nonlinear.

> All well-known MOR approaches fail to get a small model.
> We have to capture the transport (shocks) with few modes.
> Different physics represented in different modes.
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%y Proper Orthogonal Decomposition (POD)

F(t,x,x,u) = 0, x(f)=x°
y(t) = c(x)

> Consider snapshots for some control u (and or different initial
conditions), i.e. determine

X =[x(t) x(&) ... x(tw)]

> Singular value decomposition: X = UyEn V) ~ U, Z,, V,] with
Y = diag(oy,...,0n)

> Truncate small singular values o, i = n;,...,N, n, << n

> Reduced system

Fr(t, Uanr, Unr).(r, U) - UI’Z;F(t7 Uanr, Unr).(r, U) - O



Ly Reactive flow equations

Reactive compressible 3D-Navier-Stokes equations in pipe.

dip + Ox(pv) 0,

O(pv) + Ox(pv? +p+7) = 0,

Oi(pe) + Ox (pev+ (p+T)v+®) = 0,
H(pyi) + Ox(pyiv +ji) = Muwi,

with density p, velocity v, pressure p, shear stress 7, specific
total energy e, heat flux density ¢, mass fraction y;, diffusion flux
density j;, molar masses M; and molar rates of formation w; for
speciesi=1,...,n.

PH PDE formulatlon Altmann/Schulze 2017

R. Altmann and P. Schulze. A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows. Systems Control

Lett., Vol. 100, 2017, pp. 51-55.
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Ly Velocity profile
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Ly Shifted POD, SPOD

New approach

> Identify amplitudes, phases and directions of waves from SVD
spectrum.

> Separate them as contributions in the transport phenomenon
and do POD on the remaining components.

Ansatz:
ZZ@ )of(x — (1))

Perform Galerkin model assimilation with this ansatz.
J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, The shifted proper orthogonal decomposition: A mode decomposition for

multiple transport phenomena. SIAM Journal Scientific Computing 2018. https://arXiv:1512.01985v2
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Ly Reduced velocity profile
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original approximation error (x5)
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