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Theses
. Key technologies require Modeling, Simulation, and

Optimization (MSO) of complex dynamical systems.
. Most real world systems are multi-physics systems, with

different accuracies and scales in components.
. Modeling today becomes exceedingly automatized, linking

subsystems together in a network.
. Large sets of real time data are available and must be used in

modeling and model assimilation.
. Modeling, analysis, numerics, control and optimization

techniques should go hand in hand. Digital Twins.
. Most real world (industrial) models are too complicated for

optimization and control. Model reduction is a key issue.
. We need to be able to quantify errors and uncertainties in the

reduction process, and in the MSO.
Examples from gas and heating networks.
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SFB TRR 154

Collaborative Research Center Transregio
Modelling, simulation and optimization of Gas networks

. HU Berlin

. TU Berlin

. Univ. Duisburg-Essen

. FA University Erlangen-Nürnberg

. TU Darmstadt
Goal: Gas flow simulation and optimization using a network
based model hierarchy (digital twin).
Deal with erratic demand and nomination of transport capacity,
use gas network as storage for hydrogen, methane produced
from unused renewable energy, etc.
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Components of gas flow model

System of partial differential equations with algebraic constraints
. 1D-3D compressible Euler equations (with temperature) to

describe flow in pipes.
. Network model, flow balance equations (Kirchoff’s laws).
. Network elements: pipes, valves, compressors (controllers,

coolers, heaters).
. Surrogate and reduced order models.
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Pipe flow, classical formulation
Compressible Euler equations.

0 =
∂ρ

∂t
+

∂

∂x
(ρv), Mass conservation

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂

∂x
, Momentum balance

0 =
∂

∂t

(
ρ(

1
2

v2 + e)

)
+

∂

∂x

(
ρv(

1
2

v2 + e) + pv
)

+
4kw

D
(T − Tw ) ,

Energy balance

together with equations for real gas p = RρTz(p,T ).
. density ρ, kw heat transfer coefficient,
. temperature T , wall temperature Tw ,
. velocity v , g gravitational force,
. pressure p, λ friction coefficient,
. h height of pipe, D diameter of pipe,
. e internal energy, R gas constant of real gas.
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Model hierarchy in a pipe.

Every element/node/edge in the network is modelled via a model
hierarchy, including surrogate models. This allows adaptivity in

space-time-model via error estimates.
Domschke, Hiller, Lang, Tischendorf. Modellierung von Gasnetzwerken: Eine Übersicht, Preprint SFBTRR 154, 2017.

8 / 66



Outline

1 Gas transport
2 District heating network
3 A modeling wishlist
4 Model reduction, surrogate models
5 MOR for linear pHDAEs
6 MOR approaches fpr pHDAEs
7 Moment matching
8 Tangential interpolation for pHDAEs
9 Conclusion

10 The new turbine

9 / 66



District heating network

German Ministry of Education and Research (BMBF)
Energy efficiency via intelligent district heating networks (EiFer)

. TU Berlin

. Univ. Trier

. Fraunhofer ITWM Kaiserslautern

. Stadtwerke Ludwigshafen.
Goal: Build a model hierarchy for heating network of different
levels including surrogate models. Coupling of heat, electric,
waste incineration, and gas.
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Heating network

Simulated heat distribution in local district heating network:
Technische Werke Ludwigshafen.
Entry forward flow temperature 84C, backward flow temperature
60C. 11 / 66



Hot water flow, classical formulation
Simplified incompressible Euler equations.

0 =
∂ρ

∂t
+

∂

∂x
(ρv), Mass conservation,

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂

∂x
h, Momentum balance

0 =
∂

∂t

(
ρ(

1
2

v2 + e)

)
+

∂

∂x
(ev) +

kw

D
(T − Tw ) , Energy balance

together with incompressibility condition.
Terms for pressure energy and dissipation work ignored.
. density ρ, kw heat transfer coefficient,
. temperature T , wall temperature Tw ,
. velocity v , g gravitational force, pressure p,
. λ friction coefficient, e internal energy,
. h height of pipe, D diameter of pipe.
. S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. Moses Badlyan, M. Rein, and M. Schmidt, Port-Hamiltonian

modeling of disctrict heating networks, http://arxiv.org/abs/1908.11226, submitted for publication, 2019.
. R. Krug, V. Mehrmann, and M. Schmidt, Nonlinear Optimization of District Heating Networks, Submitted for publication

https://arxiv.org/abs/1910.06453 2019.
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A wishlist
. Want a modularized network based approach.
. Want representations so that coupling of models works across

different scales and physical domains.
. Want a representation that is close to the real physics for open

and closed systems.
. Models should be easy to analyze mathematically (existence,

uniqueness, robustness, stability, uncertainty, errors etc).
. Invariance under local coordinate transformations (in space

and time). Ideally local normal form.
. Model class should allow for easy (space-time) discretization

and model reduction.
. Class should be good for simulation, control and optimization,
Is there such a Jack of all trades, German:
Eierlegende-Woll-Milch-Sau?
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Energy based network modeling

. Use energy as common quantity of different physical systems
connected as network via energy transfer.

. Split components into energy storage, energy dissipation
components, control inputs and outputs, as well as
interconnections and combine via a network (Dirac structure).

. Allow every network node to be a model hierarchy of fine or
coarse, continuous or discretized, full or reduced models.

. A system theoretic way to realize this are (dissipative)
port-Hamiltonian systems.

. P. C. Breedveld. Modeling and Simulation of Dynamic Systems using Bond Graphs, pages 128–173. EOLSS Publishers Co.
Ltd./UNESCO, Oxford, UK, 2008.

. B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and
Applications, 223. Birkhäuser/Springer Basel CH, 2012.

. A. J. van der Schaft, D. Jeltsema, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In
Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, Vol. 444. Springer Verlag, New
York, N.Y., 2014.
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Port-Hamiltonian systems
Classical nonlinear port-Hamiltonian (pH) ODE/PDE systems

ẋ = (J(x , t)− R(x , t))∇xH(x) + (B(x , t)− P(x , t))u(t),

y(t) = (B(x , t) + P(x , t))T∇xH(x) + (S(x , t) + N(x , t))u(t),

. x is the state, u input, y output.

. H(x) is the Hamiltonian: it describes the distribution of
internal energy among the energy storage elements;

. J = −JT describes the energy flux among energy storage
elements within the system;

. R = RT ≥ 0 describes energy dissipation/loss in the system;

. B ± P: ports where energy enters and exits the system;

. S + N, S = ST , N = −NT , direct feed-through input to output.

. In the infinite dimensional case J,R,B,P,S,N are operators
that map into appropriate function spaces.
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Why should this be a good approach?
. PH systems generalize Hamiltonian/gradient flow systems.
. Conservation of energy replaced by dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
y(t)T u(t) dt ,

. PH systems are closed under power-conserving
interconnection. Modularized network based modeling.

. PH structure allows to preserve physical properties in
Galerkin projection, model reduction.

. Physical properties encoded in algebraic structure of
coefficients and in geometric structure associated with flow.

Can we add algebraic constraints, like Kirchhoff’s laws,
position constraints, conservation laws?
. C. Beattie, V. M., H. Xu, and H. Zwart, Linear port-Hamiltonian descriptor systems. Math. Control Signals and Systems,

30:17, 2018.
. A. J. van der Schaft, Port-Hamiltonian differential-algebraic systems. In Surveys in Differential-Algebraic Equations I,

173-226. Springer-Verlag, 2013.
. A. van der Schaft and B. Maschke, Generalized Port-Hamiltonian DAE Systems, Systems Control Letters 121, 31-37, 2018.
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New definition pH DAEs
Definition (M./Morandin 2019)
Let X ⊆ Rm (state space), I ⊆ R time interval, and S = I×X . Consider

E(t , x)ẋ + r(t , x) = (J(t , x)− R(r , x))z(t , x) + (B(t , x)− P(t , x))u,
y = (B(t , x) + P(t , x))T z(t , x) + (S(t , x)− N(t , x))u,

with Hamiltonian H ∈ C1(S,R), where E ∈ C(S,R`,n),
J,R ∈ C(S,Rn,n), B,P ∈ C(S,R`,m), S = ST ,N = −NT ∈ C(S,Rm,m)
and z, r ∈ C(S,R`). The system is called port-Hamiltonian DAE if

Γ(t , x) = −ΓT =

[
J B
−BT N

]
, W (t , x) = W T =

[
R P

PT S

]
≥ 0,

∂H
∂x

(t , x) = ET (t , x)z(t , x),
∂H
∂t

(t , x) = zT (t , x)r(t , x).

. V. M. and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems. Proceedings of the 58th
IEEE Conference on Decision and Control (CDC), 9.-12.12.19, Nice, 2019 https://arxiv.org/abs/1903.10451
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Properties of pHDAEs
. Dissipation inequality

H(t2, x(t2))−H(t1, x(t1)) ≤
∫ t2

t1
y(τ)T u(τ)dτ

. Definition extends to weak solutions and infinite dimension.

. Invariance under state-time diffeomorphisms.

. Stability, Hamiltonian is a Lyapunov function.

. Asymptotic stability, if no energy enters via input/output and
dissipation inequality is strict.

. Structure invariant when making system autonomous.

. Structure invariant under power conserving interconnection.

. Structure invariant under constraint preserving Galerkin
projection (FE Method, model reduction).

. Underlying Lagrangian structure, symplectic flow.
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pH PDEs
Abstract port-Hamiltonian PDE formulation

dz
dt

= (J (z)−R(z))
δE(z)

δz
+ B(z)u(z) in D∗z ,

y(z) = B∗(z)
δE(z)

δz
in D∗u,

. Z = {z ∈ Dz | ρ ≥ δ, δ > 0 a.e.} ⊂ Dz = W 1,3((0, `);R3).

. For z ∈ Z, J (z)[·], R(z)[·] : Dz → D∗z are linear continuous,
J (z) is skew-adjoint, R(z) is self-adjoint semi-elliptic.

. The input is given by u(z) ∈ Du = Lq({0, `}) with linear
continuous B(z)[·] : Du → D∗z , D∗u = Lp({0, `}), 1/q + 1/p = 1.

. The system theoretic output is denoted by y(z).

. E(z) is the relative energy.
. Moses Badlyan, Maschke, Beattie, and V. M., Open physical systems: from GENERIC to port-Hamiltonian systems,

Proceedings of MTNS, 2018.
. Moses Badlyan and Zimmer. Operator-GENERIC formulation of thermodynamics of irreversible processes. Preprint TU

Berlin 2018.
. S.-A. Hauschild, N. Marheineke, V. Mehrmann, J. Mohring, A. Moses Badlyan, M. Rein, and M. Schmidt, Port-Hamiltonian

modeling of disctrict heating networks, http://arxiv.org/abs/1908.11226, submitted for publication, 2019.
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pH PDE, gas flow

Port-Hamiltonian formulation of compressible Euler including
pressure energy and dissipation work, as well as entropy
balance. A. Moses Badlyan 2019

0 =
∂ρ

∂t
+

∂

∂x
(ρv), mass conservation

0 =
∂

∂t
(ρv) +

∂

∂x
(p + ρv2) +

λ

2D
ρv |v |+ gρ

∂

∂x
, momentum balance

0 =
∂e
∂t

+
∂

∂x
(ev)) + p

∂v
∂x
− λ

2D
ρv2 |v |+ 4kw

D
(T − Tw ) , energy bal.

0 =
∂s
∂t

+
∂

∂x
(sv))− λ ρ

2D T
v2 |v |+ 4kw

D
(T − Tw )

T
, entropy balance

Add node conditions and boundary conditions. Kirchhoff’s laws.
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pH PDE, hot water flow

Port-Hamiltonian formulation of incompressible Euler including
pressure energy and dissipation work, and entropy balance.

0 = ρ
∂v
∂x
, mass conservation

0 =
∂

∂t
(ρv) + v2 ∂ρ

∂x
+
∂p
∂x

+
λ

2D
ρv |v |+ gρ

∂h
∂x
, momentum balance

0 =
∂e
∂t

+ v
∂e
∂x
− λ

2D
ρv2 |v |+ 4kw

D
(T − Tw ) , energy balance

0 =
∂s
∂t

+ v
∂s
∂x
− λ ρ

2D T
v2 |v |+ 4kw

D
(T − Tw )

T
, entropy balance

Add node conditions (Kirchhoff laws), mixing conditions etc.
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PH PDE weak form
Variables z = (ρ,M,e)T , M = ρv , energy.

E(z) = H(z)− TwS(z) :=

∫ `

0

(
|M|2

2ρ
+ e + ρgh

)
dx − Tw

∫ `

0
s(ρ,e) dx .

where Tw is assumed to be constant. Introduce ballistic free
energy H(ρ,e) = e − Tws(ρ,e), then functional E and its
variational derivatives become

E(z) =

∫ `

0

(
|M|2

2ρ
+ H(ρ,e) + ρgh

)
dx

δE(z)

δz
=

(
δE(z)

δρ
,
δE(z)

δM
,
δE(z)

δe

)T

=

((
−|M|

2

2ρ2 +
∂H
∂ρ

+ gh
)
,
M
ρ
,
∂H
∂e

)T

.
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The J operator
The operators are assembled with respect to the (block-)
structure of the state z.
Let ϕ, ψ ∈ Dz be block-structured ϕ = (ϕρ, ϕM , ϕe)T . Then

J (z) =

 0 Jρ,M(z) 0
JM,ρ(z) JM,M(z) JM,e(z)

0 Je,M(z) 0

 ,
is associated with the bilinear form

〈ϕ,J (z)ψ〉 = 〈ϕρ,Jρ,M(z)ψM〉+ 〈ϕM ,JM,ρ(z)ψρ〉+ 〈ϕM ,JM,M(z)ψM〉
+〈ϕM ,JM,e(z)ψe〉+ 〈ϕe,Je,M(z)ψM〉

〈ϕρ,Jρ,M (z)ψM〉 =

∫ `
0
ρ(ψM∂x )ϕρ dx,

〈ϕM ,JM,M (z)ψM〉 =

∫ `
0

M((ψM∂x )ϕM − (ϕM∂x )ψM ) dx,

〈ϕe,Je,M (z)ψM〉 =

∫ `
0

e(ψM∂x )ϕe + (ψM∂x )(ϕep) dx
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The R operator
The self-adjoint semi-elliptic operator R(z) has two parts
corresponding to the friction in the pipe Rλ(z) and the
temperature loss through the pipe walls Rkw(z).

R(z) = Rλ(z) +Rkw(z) =

 0 0 0
0 RλM,M(z) RλM,e(z)

0 Rλe,M(z) Rλe,e(z) +Rkw
e,e(z)

 ,
associated with the bilinear form

〈ϕ,R(z)ψ〉 = 〈ϕM ,Rλ
M,M(z)ψM〉+ 〈ϕM ,Rλ

M,e(z)ψe〉
+ 〈ϕe,Rλ

e,M(z)ψM〉+ 〈ϕe, (Rλ
e,e(z) +Rkw

e,e(z))ψe〉

〈ϕM ,R
λ
M,M (z)ψM〉 =

∫ `
0
ϕM

(
λ

2d

T

ϑ
ρ|v|

)
ψM dx,

〈ϕM ,R
λ
M,e(z)ψe〉 =

∫ `
0
−ϕM

(
λ

2d

T

ϑ
ρ|v|v

)
ψe dx,

〈ϕe, (Rλe,e(z) +R
kw
e,e(z))ψe〉 =

∫ `
0
ϕe

(
λ

2d

T

ϑ
ρ|v|v2 +

4kw

d
T
)
ψe dx.
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Boundary operators

The input is given as u(z) ∈ Du by u(z) = [M/ρ]|`0 and the port
operator B(z)[·] : Du → D?z via the pairing

〈ϕ,B(z)u(z)〉 = − [(ϕρρ + ϕMM + ϕe(e + p)) u(z)]|`0 ,

coming from the boundary terms via integration by parts.
With the adjoint operator B∗(z)[·] : Dz → D∗u, i.e.,
〈ϕ,B(z)u(z)〉 = 〈B∗(z)ϕ,u(z)〉, the system theoretic output is

y(z) = B∗(z)
δE(z)

∂z
= −

[
|M|2

2ρ
+ p + H(ρ,e) + ρgh

]∣∣∣∣`
0
.
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Surrogate models

. Replace fine phDAE model in network node by reduced or
surrogate pHDAE model.

. Reduced order model or model from input/output data.

. Do not modify network coupling structure.

. Balance equations (Kirchhoff’s laws) must still hold after
reduction.

. Make sure that the physics is still reflected correctly after
reduction, compressibility/incompressibility.

. Preserve other constraints (casimirs).

. Allow for space-time-model adaptation via tolerance control.

28 / 66



Model reduction state space
Replace semidiscretized (in space) system

F (t , xh, ẋh,uh) = 0, xh(t0) = x0
h

yh(t) = c(xh,uh)

with xh ∈ Rn, uh ∈ Rm, and yh ∈ Rp, by a reduced model

Fr (t , xr , ẋr ,uh) = 0, xr (t0) = x0
r

yr (t) = cr (xr ,uh)

with xr (t) ∈ Rnr , nr << n.

Goals
. Approximation error ‖y − yr‖ small, global error bounds;
. Preservation of physics: stability, passivity, conservation laws;
. Stable and efficient method for model reduction.
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Model reduction for ordinary pH systems
Galerkin projection MOR preserves the structure of pH/dH
systems Beattie/ Gugercin 2011. Replace

ẋ = (J − R)∇xH(x) + Bu, y = BT∇xH(x)

with ∇xH(x) = Qx by reduced system

ẋr = (Jr − Rr )Qr xr + Br u, yr = BT∇xr Hr (xr )

with x ≈ Vr xr , Qr xr = W T
r QVr xr ≈Wr Qx , Jr = W T

r JWr ,
Rr = W T

r RWr , W T
r Vr = Ir , Br = W T

r B.
If Vr and Wr are appropriate orthornormal bases, then the
resulting system is again pH and all properties are preserved.
Extension to pH/dH DAEs nontrivial
. Beattie and Gugercin. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In 50th IEEE

Conference on Decision and Control and European Control Conference (CDC-ECC), 2011.

. Chaturantabut, Beattie and Gugercin, Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian Systems, SIAM
J. Scientific Computing, 2016,

. Gugercin, Polyuga, Beattie and van der Schaft, Structure-Preserving Tangential Interpolation for Model Reduction of
Port-Hamiltonian Systems, Automatica ,2012.
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Linear time-invariant pHDAEs
Linearization arround stationary solution.

Definition (C. Beattie, V. M., H. Xu, H. Zwart 2018)
A linear constant coefficient DAE of the form

Eẋ = [(J − R)Q] x + (B − P)u,
y = (B + P)T Qx + (S + N)u,

with E ,Q ∈ R`,n, R = RT , J ∈ Rn,n, B,P ∈ Rn,m, S + N ∈ Rm,m is
called port-Hamiltonian DAE (pHDAE) if

i) QT E = ET Q, QT JQ = −QT JT Q,

ii) W :=

[
QT RQ QT P
PT Q S

]
≥ 0.

Quadratic Hamiltonian H = 1
2xT ET Qx
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Model reduction for linear pHDAE systems
Replace

Eẋ = (J − R)Qx + (B − P)u, y = (BT + PT )Qx + Du

with reduced system

Er ẋr = (Jr − Rr )Qr xr + (Br − Pr )u, yr = (Br + Pr )T Qr xr + Du

with x ≈ Vr xr , Er = W T
r EVr , Qr = W T

r QVr , Jr = W T
r JWr ,

Rr = W T
r RWr , Br + Pr = W T

r (B + P).

If Vr and Wr are appropriate orthornormal bases, then reduced
system is again a pHDAE but constraints may not be preserved.

If Q = I use Wr = Vr to keep Er symmetric positive definite
MOR must properly reflect the constraints. But they are not
always known explicitely.
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Normal form and regularization
Lemma (Beattie, Gugercin, V.M. 2019)
For a (regular) linear pHDAE there exists an orthogonal basis
transformation V̂ such that in the new variable
x̂ =

[
x̂ T

1 x̂ T
2 x̂ T

3 x̂ T
4 x̂ T

5

]T
= V̂ T x, the system has the form


E11 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




˙̂x1
˙̂x2
˙̂x3
˙̂x4
˙̂x5

 =


J11 − R11 J12 − R12 J13 J14 0
J21 − R21 J22 − R22 J23 J24 0

J31 J32 J33 0 0
J41 J42 0 0 0
0 0 0 0 0




x̂1
x̂2
x̂3
x̂4
x̂5

 +


B1 − P1
B2 − P2

B3
B4
B5

 u,

y =
[

(B1 + P1)
T (B2 + P2)

T BT
3 BT

4 BT
5

] 
x̂1
x̂2
x̂3
x̂4
x̂5

 + (S + N)u,

where E11 > 0, R22 > 0, J33 invertible and
[

J41 J42
]
, B4, B5 have full row rank.

First row dynamics, rows, 2, 3 index one equations, rows 4 and 5
are controllable index 2 and singular parts.
Unfortunately not really computable for large scale problems.
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Example: Acoustic wave in gas pipe
Mixed finite element space discretization of acoustic wave in
pipe flow leads to large scale pHDAE:

Eẋ = (J − R)x + Bu, x(0) = x0,

y = BT x ,

here Q = I, S,N,P = 0, E = ET ≥ 0.

E =

M1 0 0
0 M2 0
0 0 0

 , J =

 0 −G 0
GT 0 NT

0 −N 0

 ,R =

0 0 0
0 D 0
0 0 0

 ,B =

 0
B̃2
0

 .
The discretized Hamiltonian is given by

H(x) =
1
2

xT Ex =
1
2

(xT
1 M1x1 + xT

2 M2x2).

. H. Egger and T. Kugler. Damped wave systems on networks: Exponential stability and uniform approximations. Numerische
Mathematik, 138:839–867, 2018.

Similar structure in heating and other network based models.
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Constraints: Gas example
Normal form: SVD ÑT = UT

N

[
0
Σ

]
VN .

Transforming with U = V = diag(I,UT
N ,V

T
N ) we obtain

M1 0 0 0
0 M2,2 M2,3 0
0 MT

2,3 M3,3 0
0 0 0 0




ẋ1
ẋ2,2
ẋ2,3
˙̃x3

+


0 G1,2 G1,3 0

−GT
1,2 D2,2 D2,3 0

−GT
1,3 DT

2,3 D3,3 −Σ

0 0 Σ 0




x1
x2,2
x2,3
x̃3

 =


0

B2
B3
0

u.

Noncontrollable index two constraints x2,3 = 0.
x1, x2,2 are solutions of the classical pH system[

M1 0
0 M2,2

]
d
dt

[
x1

x2,2

]
+

[
0 G1,2

−GT
1,2 D2,2

] [
x1

x2,2

]
=

[
0

B2,2

]
u,

with initial conditions x1(0) = x0
1 , x2,2(0) = x0

2,2.

x3 = V T
N Σ−1(MT

2,3
d
dt

x2,2 −GT
1,3x1 + DT

2,3x2,2 − B3,2u),
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Model reduction approaches for pHDAEs

. Moment matching (frequency domain)

. Interpolation methods (frequency domain)

. Balanced truncation methods. (frequency domain)

. Effort and flow based methods (time domain)

. POD (time domain)

. Reduced basis (time domain)

. . . ..
. Beattie, Gugercin and V. M., Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic

Systems. http://arxiv.org/abs/1910.05674. Festschrift for 70th birthday of A. Antoulas, 2020.

. Egger, Kugler, Liljegren-Sailer, Marheineke, and V. M., On structure preserving model reduction for damped wave
propagation in transport networks, SIAM Journal Scientific Computing, Vol. 40, A331–A365, 2018.
http://arxiv.org/abs/1704.03206

. Hauschild, Marheineke and V. M., Model reduction techniques for linear constant coefficient port-Hamiltonian
differential-algebraic systems, https://arxiv.org/abs/1901.10242, 2019.
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Moment matching
Consider first a regular pHDAE system with transfer function

H(s) = BT (sE + R − J)−1B = R(s) + P(s)

with proper rational part R(s) and polynomial part P(s).
Expansion of the transfer function of the system leads to

H(s) := B>(sE + R − J)−1B =
∑∞

l=0
ml(s0 − s)l ;

where s0 is a given shift parameter.
The generalized moments ml = B>dl with vectors dl can be
derived by rational Krylov iteration (short recursion in energy
inner product)
(s0E + R − J)d0 = B, (s0E + R − J)dl = Edl−1, r ≥ 1.
Orthogonalize span{d0, . . . ,dr−1} via Arnoldi-process to get Vr .
Reduced model is a pHDAE and matches 2r − 1 moments but
index and regularity may have changed.
Difference H(s)− Hr (s) may be unbounded.
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Acoustic wave in pipe

Eẋ = (J − R)x + Bu, x(0) = x0,

y = BT x

E =

M1 0 0
0 M2 0
0 0 0

 , J =

 0 −G 0
GT 0 NT

0 −N 0

 ,R =

0 0 0
0 D 0
0 0 0

 ,B =

 0
B̃2
0

 .
. Split projection matrix Vr = [V1; V2; V3] as x = [xT

1 ; xT
2 ; xT

3 ].
. Even if columns of Vr are orthogonal, this is no longer true for

columns of Vi . Re-orthogonalization is required.
. Use cosine-sine (CS) decomposition for V1,V2[

V1

V2

]
=

[
U1 0
0 U2

] [
C
S

]
X>,

with U1, U2, X orthogonal, C,S diagonal with C2
ii + S2

ii = 1.
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Pressure correction

With and without pressure correction via CS decomposition of
the Galerkin-projection space.
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Small network
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Parametric MOR

Results for discretized (blue) and reduced model (red) with dim.
2,5,10 and damping parameter d = 0.1,1,5 (top to bottom).
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Tangential interpolation
Compute reduced order pHDAE

Er ẋr = (Jr − Rr ) xr + (Br − Pr ) u, xr (t0) = 0,
yr = (Br + Pr )T xr + (Sr + Nr ) u,

such that yr (t) is good approximation to y(t) over a wide range of u(t).
Let H(s) = (BT + PT )(sE + R − J)−1(B − P) + S + N. Given right and
left interpolation points {σ1, . . . , σr}, {µ1, . . . , µr} with right and left
tangent directions {k1, . . . , kr}, {`1, `2, . . . , `r}, construct
Hr (s) = (BT

r + PT
r )(sEr + Rr − Jr )−1(Br − Pr ) + Sr + Nr such that

H(σi)ki = Hr (σi)ki and `Ti H(µi) = `Ti Hr (µi), for i = 1,2, . . . , r .

Interpolation conditions enforced via Petrov-Galerkin projection with

Vr =
[
(σ1E + R − J)−1(B − P)k1, · · · (σr E + R − J)−1(B − P)kr

]
,

Zr =
[
(σ1E + R − J)−T (B + P)`1, · · · (σ1E + R − J)−T (B + P)`r

]
,

Er = Z T
r EVr , Jr = Z T

r JVr ,Rr = Z T
r RVr ,Br = Z T

r B,Pr = Z T
r P,Dr = D.
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Problems

. The reduced quantities may no longer have the structure. This
can be resolved by using a Galerkin projection, i.e., with
Zr = Vr . But then only the right interpolation conditions hold.

. The polynomial parts of H(s) and Hr (s) may not match,
leading to unbounded errors.

. We need to identify the constraints via the normal form or
directly from the structure of the equations.

. Beattie, Gugercin and V. M., Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic
Systems. http://arxiv.org/abs/1910.05674, 2019.
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Structured index one case

Suppose we know the algebraic constraints explicitly and have
the semi-explicit index one pHDAE structure[

E11 0
0 0

]
ẋ(t) =

[
J11 − R11 J12 − R12
−JT

12 − RT
12 J22 − R22

]
x(t) +

[
B1 − P1
B2 − P2

]
u(t),

y(t) =
[

BT
1 + PT

1 BT
2 + PT

2

]
x(t) + (S + N)u(t).

where E11 and J22 − R22 are nonsingular.
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Interpolation theoem
Theorem (Beattie, Gugercin, V.M. 2019)
Consider a semi-explicit index one pHDAE structure, interpolation
points {σ1, σ2, . . . , σr} and corresponding tangent directions

{k1, k2, . . . , kr}. Construct basis Vr =
[
V T

r ,1 V T
r ,2

]T
as[

(σ1E + R − J)−1(B − P)k1, · · · , (σr E + R − J)−1(B − P)kr
]

and set Kr =
[
k1 · · · kr

]
, Dr = D− (BT

2 + PT
2 )(J22−R22)−1(B2−P2).

Then the transfer function Hr (s) of the reduced model

Er ẋr (t) = (Jr −Rr )xr (t) + (Br −Pr )u(t), yr (t) = (Br + Pr )xr (t) + Dr u(t)

with Er = V T
r ,1E11Vr ,1, Jr − Rr = V T

r (J − R)Vr + K T
r (Dr − D)Kr ,

(Br + Pr )T = (B + P)Vr + (BT
2 + PT

2 )(J22 − R22)−1(B2 − P2)Kr ,
matches polynomial part of H(s) and tangentially interpolates it. The
reduced system is again a pHDAE if the reduced passivity matrix
Wr =

[
Rr Pr
PT

r Sr

]
is positive semidefinite.
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Uncontrollable algebr. equation
Corollary (Beattie, Gugercin, V.M. 2019)
Consider a semi-explicit index one pHDAE structure, with B2 − P2 = 0,
interpolation points {σ1, σ2, . . . , σr} and corresponding tangent

directions {k1, k2, . . . , kr}. Construct basis Vr =
[
V T

r ,1 V T
r ,2

]T
as[

(σ1E + R − J)−1(B − P)k1, · · · , (σr E + R − J)−1(B − P)kr

]
and set Kr =

[
k1 · · · kr

]
. Then the transfer function Hr (s) of the

reduced model

Er ẋr (t) = (Jr − Rr )xr (t) + (Br − Pr )u(t), yr (t) = (Br + Pr )xr (t) + Du(t)

with Er = V T
r ,1E11Vr ,1, Jr −Rr = V T

r (J −R)Vr , (Br + Pr )T = (B + P)Vr ,
is a phDAE, matches the polynomial part of H(s), and tangentially
interpolates it.

Similar results for index 2 pHDAEs, with and without controllable
algebraic parts.
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Numerical example
Consider pHDAE formulation of incompressible Oseen
equations,

∂tv = −(a · ∇)v + µ∆v −∇p + f in Ω× (0,T ], v = 0, on ∂Ω× (0,T ],
0 = −div v , in Ω× (0,T ], v = v0, in Ω× 0,

with velocity v and pressure p, µ > 0 is the viscosity, and
Ω = (0,1)2. f = b(x)u(t) is an externally body force..
FD discretization gives siso index-2 pHDAE with n = 7399,
nv = 4900, and np = 2499.

1 2 3 4 5 6 7 8 9 10
 r  

10-5

10-4

10-3
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100

 ||
 H

 - 
H

r ||
 / 

|| 
H

 ||

Relative H  error vs reduced order

Figure: Model reduction error for Oseen example with IRKA as r varies
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Extension to nonlinear case

. Generate projection spaces via POD or shifted POD
approaches in tranport dominant case.

. Combine with Empirical Interpolations Methods. (D)EIM.

. Incorporate as much as possible information from physical
system.

. There is still much to do for the DAE case, in particular if the
system has many transports.

. Barrault, Maxime, et al. An empirical interpolation method: application to efficient reduced-basis discretization of partial
differential equations. Comptes Rendus Mathematique 2004.

. Chaturantabut, Beattie, and Gugercin. Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM
Journal Scientific Computing, 2016.

. Chaturantabut, Sorensen, Nonlinear Model Reduction via Discrete Empirical Interpolation, SIAM Journal Scientific
Computing, 2010.

. Reiss, Schulze, Sesterhenn, and V.M. The shifted proper orthogonal decomposition: A mode decomposition for multiple
transport phenomena. SIAM Journal Scientific Computing, 2018.
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Summary

. Energy based modeling for networks of multi-physics
multi-scale problems.

. Model hierarchies of port-Hamiltonian DAE models.

. Structured model reduction.

. Tangential interpolation for pHDAEs.

. Moment matching for pHDAEs.
. Beattie, Gugercin and V. M., Structure-preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic

Systems. http://arxiv.org/abs/1910.05674. Festschrift for 70th birthday of A. Antoulas, 2020.

. Egger, Kugler, Liljegren-Sailer, Marheineke, and V. M., On structure preserving model reduction for damped wave
propagation in transport networks, SIAM Journal Scientific Computing, Vol. 40, A331–A365, 2018.
http://arxiv.org/abs/1704.03206

. Hauschild, Marheineke and V. M., Model reduction techniques for linear constant coefficient port-Hamiltonian
differential-algebraic systems, https://arxiv.org/abs/1901.10242, 2019.
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Other work and Outlook

. Real time control, optimization.

. Nonlinear pHDAEs.

. EIM, DEIM, POD, shifted POD.

. Application in Gas networks and heating networks.

. Application in new turbine development.

. Application in brake squeal.

. Application in digital twins.

. Data based methods.
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A new turbine
Collaborative Research Center 1029 ’TurbIn’ at TU Berlin.
Goal: Significant increase of efficiency of gas turbines via the
interactive use of instationary effects of combustion and flow in
gas turbines.
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The new turbine

Can we use the same approach for the new turbine?
. Flow is reactive and transport dominated.
. Fast moving shocks and reaction fronts.
. Highly nonlinear.
. All well-known MOR approaches fail to get a small model.
. We have to capture the transport (shocks) with few modes.
. Different physics represented in different modes.
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Proper Orthogonal Decomposition (POD)

F (t , x , ẋ ,u) = 0, x(t0) = x0

y(t) = c(x)

. Consider snapshots for some control u (and or different initial
conditions), i.e. determine

X =
[

x(t1) x(t2) . . . x(tN)
]

. Singular value decomposition: X = UNΣNV T
N ≈ Unr Σnr V T

nr
with

Σ = diag(σ1, . . . , σN)

. Truncate small singular values σi , i = nr , . . . ,N, nr << n

. Reduced system

Fr (t ,Unr xr ,Unr ẋr ,u) = UT
nr

F (t ,Unr xr ,Unr ẋr ,u) = 0.
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Reactive flow equations
Reactive compressible 3D-Navier-Stokes equations in pipe.

∂tρ + ∂x (ρv) = 0,
∂t(ρv) + ∂x (ρv2 + p + τ) = 0,

∂t(ρe) + ∂x (ρev + (p + τ)v + Φ) = 0,
∂t(ρyi) + ∂x (ρyiv + ji) = Miωi ,

with density ρ, velocity v , pressure p, shear stress τ , specific
total energy e, heat flux density Φ, mass fraction yi , diffusion flux
density ji , molar masses Mi and molar rates of formation ωi for
species i = 1, . . . ,n.
PH PDE formulation Altmann/Schulze 2017
R. Altmann and P. Schulze. A port-Hamiltonian formulation of the Navier-Stokes equations for reactive flows. Systems Control

Lett., Vol. 100, 2017, pp. 51–55.
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Measurements
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Velocity profile
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Shifted POD, SPOD

New approach
. Identify amplitudes, phases and directions of waves from SVD

spectrum.
. Separate them as contributions in the transport phenomenon

and do POD on the remaining components.
Ansatz:

u(x , t) =
n∑

k=1

∑
i

αk
i (t)φk

i (x −∆k (t))

Perform Galerkin model assimilation with this ansatz.
J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, The shifted proper orthogonal decomposition: A mode decomposition for

multiple transport phenomena. SIAM Journal Scientific Computing 2018. https://arXiv:1512.01985v2
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Reduced velocity profile
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Comparison
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